
Squawk: A Graphical Software for Spectral Audio Processing

Ryoho Kobayashi

Graduate School of Media and Governance, Keio University
ryoho@sfc.keio.ac.jp

Abstract
This paper describes the design and development of new
graphical software for spectral audio processing. There are
three phases to accomplish the audio processing. First,
spectrograms are generated from an input audio signal
using Short-Time Fourier Transform (STFT) analysis, and
the sonogram image is continually shifting from right to left.
Secondly, the sonogram is transformed by placing prepared
effect objects such as panning, compressor and delay, on
the streaming spectrogram. These effect objects provide
various transformations to specific range of frequencies,
then, by combining them, powerful effects will be produced.
Thirdly, a transformed audio signal is generated from the
edited sonogram by using overlap-add resynthesis or
oscillator bank resynthesis technique.

1 Introduction
Spectral audio processing is an effective technique for

synthesizing new sounds from existing materials, and
numerous applications have been published over the past
few decades. There are, however, a considerable number of
parameters for controlling these processors, therefore, it is
difficult to handle spectral data completely.

For reasons mentioned above, it is obvious that an
ingenious user interface is required. Various applications
such as MetaSynth, NI-Spektral Delay, AudioSculpt (Serra
1997), and Lemur (Fitz, Haken, and Holloway 1995) have
actually demonstrated the power and popularity of graphical
user interfaces for spectral audio processing.

The new application software named Squawk this paper
presents currently run on Mac OSX, and provides a simple
graphical user interface based on spectrographic trans-
formation techniques (Roads 2001).

The purposes of the design and development of this
software are to produce powerful, flexible and various
spectral transformations with intuitive operationality. To
accomplish these purposes, some new ideas adopting
Spectral Stream, and Effect Object, are implemented for the
graphical user interface.

2 Analysis
The analysis in Squawk adheres to the Short-Time

Fourier Transform (STFT) technique (Allen 1977, Moore
1990, Kobayashi 2003). And, the results of the STFT
analysis are utilized to generate spectrograms.

2.1 STFT analysis
The first step for analysis is to calculate magnitude and

phase spectra from an audio signal using the STFT analysis.
As a preparation for spectrum analysis, the STFT imposes a
window upon the input signal. This windowing process
breaks the input signal into a series of segments that are
shaped in amplitude by the chosen window function. By
adopting DFT techniques for each windowed and segmented
input signal, both the magnitude and phase spectrum are
provided. For further details of the STFT techniques, see
Allen (1977) and Moore (1990).

In Squawk, the user can set general parameters for STFT
(FFT size, window size, hop size and window type).

2.2 Generating Spectrograms
A spectrogram is a well-known spectrum display tech-

nique. It represents an audio signal as a two-dimentional
display of time versus frequency.

In Squawk, four spectrograms are used. These describe
magnitude spectrograms and phase spectrograms for each
stereo channel. In case of where a mono sound source is
provided, the same spectrogram is adopted for each stereo
channel in the analysis stage.

The phase spectrograms, which are containing phase
values for each time and frequency, are not displayed in
editor field, and they are used only for resynthesis.

For the magnitude spectrograms, the magnitudes for
each time and frequency for left channel are converted to
the brightness of blue components, and for right channel,
they are converted to the brightness of yellow components.
By adding these two spectrograms, the magnitude spectro-
grams for each stereo channel are displayed on a single
image.

The user can select the types of scale for magnitudes and
frequencies, whether linear or logarithmic.

Figure 1. Squawk user interface. Cutoff Object, Shifting

Object, Delay Object, and Snapshot Object are placed in a
sonogram field.

3 User Interface
In this section, design of user interface for this software

is illustrated. The Squawk user interface offers intuitive
interaction for spectral transformation by adopting original
ideas such as Spectral Stream and Effect Object.

3.1 Basic Parameters
Squawk has some basic parameters for analysis, editing,

and resynthesis. General STFT parameters, the range of
frequencies and amplitudes, and the type of scale (linear or
logarithmic) for amplitudes and frequencies for display, are
set on the configuration window. Repetition, speed, and
gain for playback can be adjusted on the main window.

3.2 Spectral Stream
The spectrograms provided by STFT analysis are disp-

layed on the main window, and shifted continually from
right to left. The speed of shifting corresponds to playback
speed. By changing this value, time-stretching effect is
briefly provided.

3.3 Spectrographic Transformation
The spectrographic transformations are produced by

Effect Objects. Every object is rectangular shaped, and has a
mark corresponding to the effect. When frequency compo-
nents, represented in spectrogram, touch the right side of an
object, they are regarded as an input for the processor, and
then, the processed results will be output from the left side
of the object. This operation denotes that the height of a
object corresponds to the range of frequencies for a
processor (Figure 2).

The detailed functions for each object are presented in
the next section.

3.4 Synthesis Line
In Squawk, time transition is represented as the move-

ments of spectrograms. A fixed vertical line is displayed on
the main window to specify the position for resynthesizing.
The spectrum approaching to this line will be resynthesized
and converted to a time-domain audio signal (Figure 2).

Figure 2. Behaviors of “Effect Object” and “Synthesis

Line”. The vertical axis depicts frequency, and the
horizontal axis depicts time.

4 Parameters for Effect Objects
Squawk has eight effect objects for editing spectra. In

this section, parameters and functions for each effect object
are described.

Every object implemented for Squawk has three com-
mon parameters that are described in the following list.

Origin Location of the origin of effect object.
The X-axis position corresponds to
time, and the Y-axis position
corresponds to frequency.

Size Width and Height of effect object.
The height corresponds to bandwidth
of frequency.

Dry / Wet Adjust the balance of original and
effected sound

4.1 Cutoff Object
Cutoff Object deletes frequency components within a

specific range of frequencies that is provided by the location
and size of the object. This object has no additional
parameters.

4.2 Panning Object
Panning Object provides an auto panning effect, which

creates a time-varying movement between left and right for

stereo. In the Squawk user interface, this object converts the
color of sonogram.

Center Shift center position for modulation
between left (-100) and right (100).
Default value is 0.

Amount Amplitude of modulation.

Frequency Frequency of modulation. This value
is set in Hz or BPM.

Mod-Type Waveform for modulator, sine,
sawtooth, square, triangle, or random.

4.3 Shifting Object
Shifting Object creates modulated pitch shifting, by

shifting up or down a specified range of frequencies.

Base Shifting amount in Hz. Positive value
means shift-up and negative value
means shift-down.

Amount Amplitude of modulation.

Frequency Frequency of modulation. This value
is set in Hz or BPM.

Mod-Type Waveform for modulator, sine,
sawtooth, square, triangle, or random.

4.4 Stretching Object
Stretching Object creates frequency stretching. This

operation means converting a range of frequencies.

Center Center frequency for stretching.

Ratio Stretching ratio between 0 and 100.
The value 0 makes single partial tone
(one pixel in Squawk user interface).

4.5 Compressor Object
Compressor Object alters the dynamic envelope.

Threshold Level in dB past which compression
will begin to take effect.

Ratio Amount of gain reduction.

Attack How fast the gain is reduced in
response to an increase in input signal
level above the threshold.

Release How fast the gain is restored to
normal levels after the input signal
falls below the threshold.

4.6 Delay Object
Delay Object offers stereo delay effects. The parameters

Delay Time and Feedback are prepared for each left and
right channel.

Delay Time Specify the delay time in milliseconds
or BPM.

Feedback Multiplier for feedback delay.

Stereo Link Link effect for each left and right
channel.

4.7 Filter Object
Filter Object applies a filter in frequency domain within

a specific range of frequencies. By drawing the shape of
filter, a flexible effect is produced (Figure 3).

Shape Specify the delay time in milliseconds
or BPM.

Figure 3. Parameter setting window for filter object

4.8 Snapshot Object
Snapshot Object varies the intervals of transition in time

domain. By taking a sound frame, and by holding the frame
stationary until a next cue is given, a rhythmic transition is
produced.

Interval Interval between cues in milliseconds
or BPM.

5 Resynthesis
The user has two options, overlap-add resynthesis or

oscillator bank resynthesis technique, for generating an
audio signal from a transformed spectrogram.

5.1 Overlap-Add Resynthesis
By adopting Inverse Discrete Fourier Transform (IDFT)

to each frame, each windowed and segmented signal is
reconstructed from the spectrum components. The IDFT
takes each magnitude and phase component from spectro-
grams, and generates a corresponding time-domain signal.
Then, by overlapping and adding these resynthesized seg-
ments, this method provides an audio signal.

5.2 Oscillator Bank Resynthesis
Oscillator bank converts the analysis data, which are

obtained from magnitude and phase spectrograms, into the
sets of amplitude and frequency envelopes for controlling
oscillators. This method is generally powerful for spectral
transformations than the overlap-add method, and provides
high-quality results in most situations for spectrographic
editing. This method, however, requires high computational
cost. For reducing the cost, it is effective to narrow the
range of frequencies for resynthesis. Squawk can specify the
displaying range of frequencies.

6 Conclusion
Squawk offers powerful tools for spectral transformation

with easy-to-use graphical user interface. Squawk has,
however, a few limitations.

Squawk currently has only eight processors. There are
numerous processing techniques can be added. To add these
various processors, Squawk should eventually implement an
original plug-in format that is specialized in spectrographic
transformations, and publish SDK for the plug-in.

As another limitation, there are difficulties of real-time
manipulation. In the current version of Squawk, the parame-
ters for processors cannot be altered. MIDI or OpenSound
Control (Wright, Freed, and Momei 2003) will facilitate to
solve this problem.

In addition to these, Square will be a performance tool
by implement a new composition capability. It is considered
that Squawk has compatibility with agent-based compo-
sition system (Uozumi 2005).

These ideas will be implemented in future versions.
The demonstration movies, sample sounds and detailed

screenshots of current version of Squawk are available at the
following web site.

http://web.sfc.keio.ac.jp/~ryoho/squawk/

References
Allen, J. B. 1977. Short Term Spectral Analysis, and Modification

by Discrete Fourier Transform. IEEE Transactions on
Acoustics, Speech, and Processing 25(3), pp. 235-238.

Dolson, M. 1986. The Phase Vocoder – A Tutorial. Computer
Music Journal 10(4), pp. 14-27.

Fitz, K., L. Haken, and B. Holloway. 1995. Lemur – A Tool for
Timbre Manipulation. In Proceedings of the International
Computer Music Conference, pp. 158-161. Banff, Canada:
International Computer Music Association.

Kobayashi, R. 2003. Sound Clustering Synthesis Using Spectral
Data. In Proceedings of the International Computer Music
Conference, pp. 239-241. Singapore: International Computer
Music Association.

Moore, F. R. 1990. Elements of Computer Music. Englewood
Cliffs, New Jersey: Prentice Hall.

Penrose, C. 1999. Extending Musical Mixing: Adaptive Composite
Signal Processing. In Proceedings of the International
Computer Music Conference, pp. 508-511. Beijing, China:
International Computer Music Association.

Roads, C. 2001. Microsound. Cambridge, Massachusetts: MIT
Press.

Serra, M. -H. 1997. Introducing the phase vocoder. In Musical
Signal Processing. Lisse: Swets and Zeitliinger. pp. 31–90.

Uozumi, Y. 2005. Gismo: An Application for Agent-Based
Composition. In Proceedings of the International Computer
Music Conference, pp. 817-820. Barcelona, Spain:
International Computer Music Association.

Wright, M., A. Freed, and A. Momei. 2003. OpenSound Control:
State of the Art 2003. In Proceedings of International
Conference on New Interfaces for Musical Expression, pp.
153-159. Montreal, Canada.

